收藏到会员中心

文档题目:

基于支持向量机的人脸识别技术研究(含代码+实验说明+PPT)

基于支持向量机的人脸识别技术研究(含代码+实验说明+PPT)
上传会员: xiaohou
提交日期: 2013-09-25 12:28:52
文档分类: 通信工程
浏览次数: 45
下载次数: 0
下载地址: 点击标题下载 基于支持向量机的人脸识别技术研究 (需要:40 积分)  如何获取积分?
下载提示: 不支持迅雷等下载工具,请右键另存为下载,或用浏览器下载。不退出登录1小时内重复下载不扣积分。
文档介绍: 以下为文档部分内容,全文可通过注册成本站会员下载获取。也可加管理员微信/QQ:17304545代下载。
文档字数:
文档字数:20095本设计包括文件见上方文件夹预览,如看不清楚,请另存至电脑查看
基于支持向量机的人脸识别技术研究
摘   要
人脸识别技术是国内外共同关注的一个前沿课题,在现代经济和社会的发展中有着十分广泛的应用领域和应用前景,如安全系统、罪犯识别、电视会议等,因而已经成为当前模式识别和人工智能的一个研究热点。
本文总结了人脸识别技术的研究现状,讨论将支持向量机用于模式识别的理论,研究了其中的关键技术和难点,并进行了分析和比较。本文提出了一种基于图片分割的人脸特征提取方法,该方法利用二维离散余弦变换对每个子图片进行分解,并利用支持向量机作为分类器来识别不同的人脸。基于图象的划分,一个新的图象提取的方法,它使用2维的离散余弦变换来分解图象,特征被提出来。根据DCT,一个脸部识别模型是由与SVMS绑定构成的。为了划分符合类型的分类,一对多的策略在我们的模型中被使用。支持向量机是新一代基于在静态学习理论中的近代先进的学习系统。SVMS在真实世界的实现中提交图画状态的表现,诸如文本分类,图象分类,小块信息,等等。和目前一些人脸识别方法相比,本文提出的人脸识别算法具有较好的性能,在ORL人脸库上的性能模拟表明,算法具有较高识别率。
关键词:人脸识别;支持向量机;离散余弦变换;ORL数据库


目   录
摘   要 I
Abstract II
图目录 III
表目录 IV
目   录 V
1. 绪 论 1
1.1 课题研究背景 1
1.2相关学科研究进展 3
1.3自动人脸识别系统 4
1.4本文研究内容及结构 5
2. 人脸识别综述 7
2.1 基于人工定义特征的识别方法 7
2.2 基于自动获取特征的识别方法 7
2.2.1 基于支持向量机的识别方法 7
2.2.2 基于神经网络的识别方法 9
2.2.3 基于统计特征的识别方法 10
2.2.4 基于小波特征的弹性匹配方法 12
3. 支持向量机的基本理论和算法 16
3.1 支持向量机的特点与应用 16
3.2 支持向量机概述 21
3.2.1 支持向量机(SVM)的人脸识别结构 21
3.2.2 支持向量机(SVM)的人脸识别算法 22
4. 基于DCT和支持向量机的人脸识别系统 24
4.1 人脸特征的提取 24
4.1.1 离散余弦变换 24
4.1.2 系数选取 26
4.1.3 本实验中的DCT处理过程 31
4.2 支持向量机的结构设计 31
5. 性能评价 33
5.1 人脸数据库 33
5.2 实验结果 34
5.2.1 不同特征维数性能比较 34
5.2.2 不同核函数的性能比较 35
6. 总结 37
谢辞 38
参考文献 39
附录部分 41
附录A 41


(本文由word文档网(www.wordocx.com)会员上传,如需要全文请注册成本站会员下载)

热门文档下载

相关文档下载

上一篇传感器网络瓶颈节点识别算法及其.. 下一篇P2P网络中的匿名通信算法研究(含..

相关栏目

最新文档下载

推荐文档下载